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Abstract

Background—Chronic arsenic exposure is a public health concern in many parts of the world, 

with elevated concentrations in groundwater posing a threat to millions of people. Arsenic is 

associated with various cancers and an array of chronic diseases; however, the relationship with 

adverse pregnancy outcomes and child mortality is less established.

Objectives—We evaluated associations between individual-level prenatal arsenic exposure with 

adverse pregnancy outcomes and child mortality in a pregnancy study among 498 women nested 

in a larger population-based cohort in rural Bangladesh.

Methods—Creatinine-adjusted urinary total arsenic concentration, a comprehensive measure of 

exposure from water, food, and air sources, reflective of the prenatal period was available for 

participants. Self-reported pregnancy outcomes (livebirth, stillbirth, spontaneous/elective abortion) 

were ascertained. Generalized estimating equations, accounting for multiple pregnancies of 

participants, were used to estimate odds ratios and 95% confidence intervals in relation to adverse 
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pregnancy outcomes. Vital status of livebirths was subsequently ascertained through November 

2015. Cox proportional hazards models were used to estimate hazard ratios and 95% confidence 

intervals in relation to child mortality.

Results—We observed a significant association between prenatal arsenic exposure and the risk of 

stillbirth (greater than median; adjusted OR=2.50; 95% CI=1.04, 6.01). We also observed elevated 

risk of child mortality (greater than median; adjusted HR=1.92; 95% CI=0.78, 4.68) in relation to 

prenatal arsenic exposure.

Conclusions—Prospective studies should continue to evaluate prenatal and early life health 

effects of arsenic exposure and arsenic remediation strategies for women of child-bearing age.

1. Introduction

Arsenic is ubiquitous in the environment, with human exposure occurring through dietary 

intake, inhalation of contaminated air, and ingestion of contaminated soil/dust (Joseph et al. 

2015). However, the consumption of arsenic-contaminated drinking water is the major 

exposure route that affects more than 200 million people worldwide, including 

approximately 77 million in Bangladesh and 17 million in the United States (US) (BBS/

UNICEF 2014; IARC 2004). With respect to its frequency, toxicity, and potential for human 

exposure, arsenic holds the highest ranking since 1997 on the US Agency for Toxic 

Substances and Disease Registry (ATSDR) substance priority list.

Chronic exposure to arsenic has been associated with a number of health outcomes, 

including increased risk of cancers (skin, lung, liver, bladder, and kidney), cardiovascular 

disease (coronary heart disease, acute myocardial infarction, and hypertension), respiratory 

disease, and diabetes mellitus (Abdul et al. 2015; Maull et al. 2012; Moon et al. 2012; 

Sanchez et al. 2016). While there is extensive literature on the health impacts of arsenic 

exposure in adult populations and a growing literature on impaired neurodevelopment 

function in children (Tsuji et al. 2015), there is relatively little epidemiologic research 

evaluating the effects of in utero arsenic exposure on pregnancy outcomes and early life. 

Arsenic readily crosses the placental barrier and thus may influence fetal development. 

Strong correlations have been observed between concentrations of arsenic in placenta and 

cord blood arsenic levels in an Argentine population (Concha et al. 1998), maternal blood 

and cord blood arsenic levels in a Bangladeshi population (Hall et al. 2007), and placental, 

maternal, and infant arsenic levels in a US population (Punshon et al. 2015).

A recent meta-analysis evaluating associations of arsenic exposure with adverse pregnancy 

outcomes and infant mortality reported significantly elevated risks of spontaneous abortion, 

stillbirth, neonatal mortality, and infant death based on published research from Asia and the 

US (Quansah et al. 2015). However, the majority of the existing studies utilized ecologic 

exposure assessments of arsenic concentrations in drinking water. The best evidence to date 

comes from a prospective cohort study of women in rural Bangladesh with individual-level 

measures of urinary total arsenic concentrations during pregnancy. The study observed a 

significant dose-response relationship with infant mortality as well as elevated risks of 

spontaneous abortion and stillbirth, although these were associated with wide confidence 

intervals and no clear dose-response association (Rahman et al. 2010).
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Thus, prospective, individual-level evidence supporting adverse effects of arsenic exposure 

with pregnancy outcomes and infant mortality is still limited. In this study, we sought to 

evaluate the association of individual-level prenatal arsenic exposure based on maternal 

creatinine-adjusted urinary total arsenic concentration with risk of adverse pregnancy 

outcome (stillbirth, spontaneous abortion, and therapeutic/elective abortion) as well as child 

mortality in a pregnancy study among 498 women nested in a larger population-based cohort 

in rural Bangladesh.

2. Methods

2.1 Study population

The Bangladesh vitamin E and Selenium Trial (BEST) is a 2×2 factorial randomized control 

trial of 7,000 participants (2,840 males and 4,160 females) aged 25 to 65 years with manifest 

arsenical skin lesions living in rural Bangladesh. The aim of the trial was to evaluate 

selenium and/or vitamin E in relation to risk of non-melanoma skin cancer. Detailed 

information including study design, ascertainment of arsenic exposure, data collection and 

demographic characteristics of participants have been described elsewhere (Argos et al. 

2013). Women self-reporting a pregnancy at the semiweekly home visit by a village health 

worker during the course of the study were temporarily suspended from the trial and 

discontinued randomized study vitamins for the duration of the pregnancy, plus an additional 

6 months following a livebirth. Of the 4,160 women in the BEST cohort, 510 women 

reported a pregnancy during the trial and completed a pregnancy follow-up questionnaire 

(622 pregnancies total) between February 2007 and October 2015. For the purposes of these 

analyses, we included only singleton births (10 twin birth pregnancies excluded). Of the 

remaining 612 pregnancies, data were missing for arsenic exposure on 14 pregnancies, 

yielding 598 pregnancies (in 498 women) contributing data to these analyses. Informed 

consent was obtained from all women, and study procedures were approved by the 

institutional review boards at each research institution.

2.2 Assessment of pregnancy outcome and child mortality

Village health workers visited study participants reporting a pregnancy on a monthly basis 

and collected information on the status of the pregnancy. As soon as a pregnancy outcome 

was reported to the village health worker, a study physician interviewer administered a 

pregnancy follow-up questionnaire in-person to the participant. As part of the pregnancy 

questionnaire, self-reported data were collected on the outcome of the pregnancy, including 

livebirth, stillbirth (defined as fetal loss after 20th week of gestation), spontaneous abortion 

(defined as fetal loss up to 20th week gestation), and therapeutic/elective abortion. Among 

all livebirths (n=489), vital status was subsequently ascertained by a village health worker 

through November 2015, with an average follow-up of 4.7 years, for a total of 2,270.2 

person-years of follow-up.

2.3 Assessment of arsenic exposure

A spot urine sample was collected at baseline and biennially thereafter from all trial 

participants by a trained study physician interviewer. Urine was collected in a 50 ml acid 

washed tube and was stored in -20°C in the field laboratory until shipment on dry ice to the 
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Trace Metals Core Facilities Laboratory at Columbia University. Upon arrival to Columbia 

University, all samples were stored in -20°C until analysis. Urinary total arsenic 

concentration was measured by graphite furnace atomic absorption spectrometry, with a 

detection limit of 2 μg/L (Nixon et al. 1991). Urinary creatinine concentration was measured 

by a colorimetric method based on the Jaffe reaction in the same laboratory (Heinegard and 

Tiderstrom 1973). For livebirths, prenatal arsenic exposure was assigned based on the urine 

sample closest to the date of delivery. The spot urine sample was collected on average 428 

days (median=408 days) prior the date of birth. For adverse pregnancy outcomes (stillbirth, 

spontaneous abortion, and therapeutic/elective abortion), prenatal arsenic exposure was 

assigned according to the measurement just preceding the date of the adverse pregnancy 

event. For adverse pregnancy outcomes, the assigned arsenic exposure was ascertained from 

a spot urine sample collected on average 395 days (median=400 days) prior to the reported 

event. For the purposes of these analyses, creatinine-adjusted urinary total arsenic 

concentration (μg/g creatinine) was derived by dividing the arsenic concentration by 

creatinine concentration of the sample. Creatinine adjustment was used to account for 

hydration status and thus variable dilution of the spot urine samples. Analyses were 

conducted with arsenic modelled as a binary variable (dichotomized at the median value) as 

well as a continuous variable.

2.4 Assessment of covariates

Maternal characteristics including years of education and arsenical skin lesion severity were 

ascertained from the baseline questionnaire of BEST (administered between 2006 to 2009). 

Skin lesion severity was determined by a comprehensive skin examination conducted by a 

trained study physician interviewer, and categorized as mild for presence of melanosis or 

leucomelanosis and severe for the presence of keratosis (Argos et al. 2013). Maternal self-

reported reproductive- and pregnancy-related characteristics for each reported pregnancy 

were derived from the pregnancy questionnaire, including prenatal care (yes, no), number of 

prenatal visits, maternal smoking (yes, no), regular exposure to second-hand smoke in the 

home (yes, no), physician-diagnosed gestational hypertension (yes, no), physician-diagnosed 

preeclampsia (yes, no), physician-diagnosed gestational diabetes (yes, no), gravidity, parity, 

and prior stillbirth (yes, no).

2.5 Statistical analysis

Descriptive analyses were conducted using Wilcoxon rank sum test for continuous variables, 

Mantel-Haenszel chi-squared test for ordinal variables, and Pearson chi-squared test for 

nominal and dichotomous variables. Since multiple pregnancies were observed for some 

women, generalized estimating equation (GEE) models were used to estimate odds ratios 

(ORs) and 95% confidence intervals (CIs) for the associations between arsenic exposure and 

adverse pregnancy outcomes. In initial analyses, a dichotomous outcome was specified for 

adverse pregnancy outcome (stillbirth, spontaneous abortion, or therapeutic/elective abortion 

versus livebirth). Three models were fit: 1) unadjusted; 2) adjusted for maternal age (years); 

and, 3) fully adjusted including maternal age (years), maternal years of education (years), 

BEST treatment assignment (placebo, selenium, vitamin E, selenium and vitamin E), and 

skin lesion severity (mild, severe). Subgroup analyses were also implemented to evaluate 

stillbirth, spontaneous abortion, and therapeutic/elective abortion separately. Stillbirth 
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outcomes were additionally adjusted for parity and previous stillbirth based on a priori 
knowledge (Abu-Heija and Chalabi 1997; Di Mario et al. 2007; McClure et al. 2006), and 

the observed association of stillbirth with both parity and previous stillbirth in this study 

sample. Other potential confounders were additionally selected based on a priori knowledge 

(Kumar 2011; McClure et al. 2006; Shah et al. 2011).

Marginal Cox proportional hazards models with the robust sandwich estimate for estimating 

the covariance matrix were used to estimate hazard ratios (HRs) and 95% CIs for the 

association between prenatal arsenic exposure and child mortality (Lee 1992). Vital status 

was ascertained through November 2015. Follow-up time was calculated as the number of 

days between date of birth and date of death or, if alive, date of the last report of being alive; 

such participants were censored. Three models were fit: 1) unadjusted; 2) adjusted for 

maternal age (years); and, 3) fully adjusted including maternal age (years), maternal years of 

education (years), BEST treatment assignment (placebo, selenium, vitamin E, selenium and 

vitamin E), maternal skin lesion severity (mild, severe), exposure to passive tobacco smoke 

(yes, no) and child sex (male, female). Subgroup analyses evaluating the association 

between prenatal arsenic exposure and infant mortality before one year of age (restricted to 

12 deaths) were also conducted; children who died after one year of age were censored in 

this analysis.

Sensitivity analyses were conducted in relation to adverse pregnancy outcomes and child 

mortality restricted to pregnancies from women with prenatal arsenic exposure classified 

based on available data within one year of the pregnancy.

3. Results

Maternal characteristics for all observed pregnancies are shown in Table 1. The mean 

maternal age of the study sample was 32.2 years. The median creatinine-adjusted urinary 

arsenic concentration was 555 μg/g creatinine, ranging from 17 to 3,712 μg/g creatinine. 

Adverse pregnancy outcomes were reported in 109 (18.3%) of the reported pregnancies in 

the study, including 23 (3.9%) stillbirths, 60 (10.0%) spontaneous abortions, and 26 (4.4%) 

therapeutic/elective abortions. While almost all females in the study were non-smokers 

(n=594, 99.2%), 200 (39.1%) women reported regular exposure to environmental tobacco 

smoke inside their homes during pregnancy. Increased maternal age (OR=1.12; 95% 

CI=1.07, 1.17) and prior stillbirth pregnancy (OR=3.64; 95% CI=1.66, 7.98) were associated 

with having an adverse pregnancy outcome; whereas, parity (OR=0.68; 95% CI=0.50, 0.94) 

was inversely associated with having an adverse pregnancy outcome.

Associations between prenatal arsenic exposure and adverse pregnancy outcomes are 

summarized in Table 2. Higher prenatal urinary total arsenic concentration (>555 μg/g 

creatinine) was associated with increased risk (adjusted OR=1.59; 95% CI=1.02, 2.46) of 

adverse pregnancy outcome, defined as stillbirth, spontaneous abortion, or therapeutic/

elective abortion. When considering creatinine-adjusted arsenic concentration as a 

continuous exposure measure, a 50 μg/g increase in arsenic exposure was associated with a 

2% (95% CI=1.01, 1.04) increased risk of adverse pregnancy outcome. Additionally, we 

conducted subgroup analyses to evaluate the associations between prenatal arsenic exposure 
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and each individual adverse pregnancy outcome. A significantly increased risk of stillbirth 

was associated with high prenatal arsenic exposure (adjusted OR=2.50; 95% CI=1.04, 6.01). 

A 50 μg/g increase in creatinine-adjusted arsenic concentration was associated with a 2% 

(95% CI=1.00, 1.05) increased risk of stillbirth when modelling arsenic as a continuous 

exposure measure.

In Table 3, associations between prenatal arsenic exposure and child mortality are 

summarized. Among the 489 livebirths, we ascertained vital status through November 2015 

on 483 (98.8%) children, with 21 deaths observed. Although the confidence intervals 

included the null, an elevated risk of child mortality was observed in relation to higher 

prenatal arsenic exposure (adjusted HR=1.92; 95% CI=0.78, 4.68). When considering 

creatinine-adjusted arsenic concentration as a continuous exposure measure, a 50 μg/g 

increase in creatinine-adjusted arsenic concentration was associated with a 4% (95% 

CI=1.01, 1.07) increased risk of child mortality. In subset analyses evaluating the association 

with infant mortality (death before 1 year of age), 12 infant deaths were observed. An 

elevated risk of infant mortality was also observed in relation to higher prenatal arsenic 

exposure (adjusted HR=2.30; 95% CI=0.63, 8.41). A 50 μg/g increase in creatinine-adjusted 

arsenic concentration was associated with a 7% (95% CI=0.99, 1.15) increased risk of infant 

mortality when modelling arsenic as a continuous exposure measure.

Sensitivity analyses were conducted to evaluate associations between prenatal arsenic 

exposure and adverse pregnancy outcomes as well as child mortality among pregnancies 

with prenatal arsenic exposure derived from within one year of the reported pregnancy 

(restricted to 260 (43.5%) pregnancies and 203 (41.5%) livebirths from the primary 

analyses). Findings from these sensitivity analyses were not appreciably different from the 

overall analyses presented (data not shown). We also conducted the overall analyses 

unadjusted for urinary creatinine as well as separately adjusting for urinary creatinine as an 

independent covariate in the model (Supplemental Table 1), with no appreciable difference 

in the results from those presented.

4. Discussion

In the present study, we observed an association between high prenatal arsenic exposure 

(>555 μg/g creatinine) in relation to adverse pregnancy outcomes, particularly stillbirths. 

There was also modest evidence of elevated risk of child mortality in relation to high 

prenatal arsenic exposure.

An increased risk of adverse pregnancy outcomes in relation to prenatal arsenic exposure has 

been observed previously and evaluated in a recent meta-analysis (Quansah et al. 2015). The 

strongest association in the present analyses was observed for stillbirths in relation to 

prenatal arsenic exposure. In previous studies, no significant association with stillbirths was 

observed in relation to well water arsenic concentration (Myers et al. 2010; Rudnai et al. 

2006) and prenatal urinary total arsenic concentration (Rahman et al. 2010). However, 

increased associations were observed with well water arsenic concentration in other studies 

(Ahmad et al. 2001; Cherry et al. 2008; Hopenhayn-Rich et al. 2000; Milton et al. 2005; von 

Ehrenstein et al. 2006) as well as with airborne arsenic emissions (Ihrig et al. 1998). For 
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spontaneous abortion, a significant increased risk was observed in relation to higher arsenic 

levels in drinking water in a large ecological study (Rudnai et al. 2006). However, in a 

population-based prospective cohort study, no significant association between prenatal 

urinary total arsenic concentration and spontaneous abortion was observed, although there 

was an increased association with infant mortality (Rahman et al. 2010). A recent case-

control study conducted in Romania also similarly showed no association between drinking 

water arsenic and spontaneous abortion (Bloom et al. 2014).

Increased risks have been previously observed with child mortality (Hall et al. 2007; 

Hopenhayn-Rich et al. 2000; Myers et al. 2010; Rahman et al. 2010) in relation to arsenic 

levels in well water, although some of these associations were associated with wide 

confidence intervals. While we did not have data available on cause of death in this study 

sample, it is possible that in utero arsenic exposure is associated with an increased risk of 

acute lower respiratory infections, the leading cause of childhood morbidity and mortality 

globally (Liu et al. 2015). Prior studies have shown that prenatal arsenic exposure is 

associated with both the frequency and severity of respiratory tract infections among infants 

(Farzan et al. 2016; Rahman et al. 2011).

In many of the previous studies, prenatal arsenic exposure was defined based on an ecologic 

exposure measure from only a single source (Ahmad et al. 2001; Aschengrau et al. 1989; 

Cherry et al. 2008; Rahman et al. 2007); whereas, in the present study, creatinine-adjusted 

urinary total arsenic concentrations were used. This biomarker of arsenic exposure reflects 

arsenic exposure from multiple sources, including drinking water, food consumption, soil, 

and dust (Hughes 2006).There are certain limitations in the present study that we consider. 

First, the proportion of spontaneous abortion events reported in the population is lower than 

expected. Since pregnancy was self-reported by female study participants, it is likely that 

participants were unaware of some early pregnancy losses. The underreporting and 

misclassification of spontaneous abortion outcomes in this study could have led to an 

underestimation of the association between prenatal arsenic exposure and early pregnancy 

loss. Second, previous studies have shown that arsenic metabolism efficiency among 

pregnant women varies across trimesters, with evidence to suggest that metabolism 

efficiency increases in the first trimester (Gardner et al. 2011; Hopenhayn et al. 2003). 

However, it was not possible to evaluate the effect of trimester-specific arsenic exposure in 

this study. Women enrolled in the BEST cohort had a spot urine sample collected every two 

years for the measurement of urinary total arsenic concentration, from which prenatal 

arsenic exposure was assigned for the present study. Therefore, the potential 

misclassification of arsenic exposure might obscure trimester-specific associations. 

However, since the correlation of urinary total arsenic concentration between biennial 

samples among women in this study is high (r=0.62-0.68), we infer that the classification of 

prenatal arsenic exposure in this study is reasonable despite not being systematically 

measured during pregnancy. Given this, arsenic exposure across trimesters is also likely to 

be highly correlated; therefore, we would not be able to evaluate trimester-specific effects in 

this study population. Third, spot urine samples are more influenced by factors such as 

hydration status and physical activity than 24-hour urine. In spite of the potential higher 

intra-individual variation, it has been reported that spot urine samples may be adequate 

biomarkers to derive reasonably accurate measurements of environmental exposure (Rivera-
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Nunez et al. 2010; Woods et al. 1998). Urinary creatinine concentrations were also used to 

adjust urinary arsenic for variation in hydration status. Although creatinine adjustment could 

introduce bias to the association estimates since urinary creatinine is affected by age, sex, 

and body size (Nermell et al. 2008), no appreciable differences in results were observed 

based on the unadjusted urinary total arsenic concentration (μg/L) analyses. Moreover, 

urinary arsenic concentration is primarily reflective of recent arsenic exposure and not 

cumulative tissue burden. However, urinary total arsenic concentration may be a relatively 

good marker of exposure in this study population since exposure is chronic and primarily 

through drinking water. It will be important for future research to investigate the relationship 

between other biomarkers of arsenic exposure (e.g., toenail or blood arsenic concentrations) 

and adverse pregnancy outcome. Fourth, it is possible that other variables, such as other 

environmental exposures or genetic factors that were unmeasured in this study population, 

may be unaccounted for in our statistical analyses. Additionally, data after baseline was not 

available on time-varying covariates (e.g., exposure to passive tobacco smoke) for the 

childhood mortality analyses, which may also have resulted in residual confounding in those 

analyses. Fifth, logistic regression analyses were conducted in the present study to estimate 

odds ratios, which may be an overestimate of the relative risks since the prevalence of 

adverse birth outcomes is common in this population (18.3%). In a comparison of the crude 

odds ratio estimates to crude relative risk estimates from a log-binomial model, no 

appreciable overestimation was observed; therefore, we deem the odds ratios to be a good 

approximation of the underlying relative risks in this analysis. Finally, the study sample 

included only women with manifest arsenic skin lesions. These women may be more 

susceptible to arsenic due to genetics or other risk factors, which may have implications for 

the generalizability of these results to less susceptible populations.

Despite the limitations noted, there is biological support for our findings stemming from 

several animal studies. Specifically, mice treated by sodium arsenite showed that meiotic 

aberration caused by arsenite may contribute to decreased preimplantation development and 

further disrupt embryo development (Navarro et al. 2004). Furthermore, a study in pregnant 

mice indicated that arsenic exposure is associated with mammalian spontaneous abortion by 

aberrant placental vasculogenesis and placental insufficiency (He et al. 2007). Particular 

strengths of the study include individual-level measurement of urinary total arsenic 

concentration and the prospective study design.

5. Conclusions

The epidemiologic literature evaluating prenatal arsenic exposure and pregnancy outcomes 

is still equivocal. The present study provides evidence supporting an adverse association 

between prenatal arsenic exposure and stillbirth in a population with moderate to high 

arsenic exposure, as well as a possible adverse association with child mortality. These 

findings encourage further research to evaluate the health impacts of prenatal and early life 

arsenic exposure in children as well as arsenic remediation strategies for women of child-

bearing age.
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Highlights

• Adverse association between moderate to high prenatal arsenic and stillbirth.

• Possible adverse association with child mortality and prenatal arsenic 

exposure.

• Arsenic remediation strategies for women of child-bearing age should be 

considered.
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Table 2
Crude and adjusted odds ratios (95% CIs) for the associations between prenatal arsenic 
exposure and adverse pregnancy outcomes

Model
Urinary total arsenic (μg/g creatinine)

17 – 555 556 – 3,712 P-value

Any adverse pregnancy outcome

 Unadjusted 1 (ref) 1.53 (1.00, 2.35) 0.05

 Adjusted for maternal age 1 (ref) 1.58 (1.02, 2.42) 0.04

 Fully adjusteda 1 (ref) 1.59 (1.02, 2.46) 0.04

Stillbirth/spontaneous abortion

 Unadjusted 1 (ref) 1.50 (0.92, 2.45) 0.10

 Adjusted for maternal age 1 (ref) 1.51 (0.93, 2.47) 0.10

 Fully adjusteda 1 (ref) 1.57 (0.96, 2.56) 0.07

Stillbirth

 Unadjusted 1 (ref) 2.41 (1.00, 5.85) 0.05

 Adjusted for maternal age 1 (ref) 2.41 (0.99, 5.85) 0.05

 Fully adjustedb 1 (ref) 2.50 (1.04, 6.01) 0.05

Spontaneous abortion

 Unadjusted 1 (ref) 1.26 (0.72, 2.20) 0.41

 Adjusted for maternal age 1 (ref) 1.27 (0.72, 2.24) 0.42

 Fully adjusteda 1 (ref) 1.33 (0.76, 2.32) 0.32

Therapeutic/elective abortion

 Unadjusted 1 (ref) 1.67 (0.75, 3.73) 0.21

 Adjusted for maternal age 1 (ref) 1.69 (0.75, 3.81) 0.21

 Fully adjusteda 1 (ref) 1.58 (0.70, 3.56) 0.27

a
Adjusted for maternal age (years), maternal education (years), BEST treatment assignment, and skin lesion severity.

b
Adjusted for maternal age (years), maternal education (years), BEST treatment assignment, skin lesion severity, parity, and previous stillbirth.
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Table 3
Crude and adjusted hazard ratio (95% CIs) for the association between in utero arsenic 
exposure and child mortality

Model
Urinary total arsenic (μg/g creatinine)

17 – 555 (n=249) 556 – 3,712 (n=234) P value

Unadjusted 1 (ref) 1.72 (0.71, 4.16) 0.23

Adjusted for maternal age 1 (ref) 1.72 (0.71, 4.15) 0.23

Fully adjusteda 1 (ref) 1.92 (0.78, 4.68) 0.15

a
Adjusted for maternal age (years), maternal education (years), child sex, BEST treatment assignment, maternal skin lesion severity, and exposure 

to passive tobacco smoke (yes, no).
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